1. AB and AC are two equal chords of a circle whose centre is O. If OD \perp AB and OE \perp AC then: (A) $$OD > OE$$ (B) $$OD < OE$$ (C) $$OD = OE$$ (D) None of these Sol. (C) AB = AC OO $$\perp$$ AB \Rightarrow AD = DB \Rightarrow AD=DB = AE OE \perp AC \Rightarrow AE = CE = CE PA = OB = OC = Radius of circle OD = $\sqrt{OA^2 - AD^2}$ = $\sqrt{OA^2 - AE^2}$ = OE 2. In the given figure, O is centre, \angle COD = 40°, then \angle AEB = : (B) $$65^{\circ}$$ (C) $$70^{\circ}$$ (D) $$75^{\circ}$$ Sol. (C) $$\angle$$ CAD = 20° \angle AEB = ? \angle COD = 40° \angle ACB = 90° = \angle ACE In ΔACE ACE $$\angle CAD + \angle ACE + \angle AEC = 180^{\circ}$$ $20^{\circ} + 90^{\circ} + \angle AEC = 180^{\circ}$ $\angle AEC = 180^{\circ} - 110^{\circ}$ $= 70^{\circ}$ $\angle AEC = \angle AEB = 70^{\circ}$ 3. O is the centre of the circle. Find $\angle BDC$. (B) $$90^{\circ}$$ (D) $$130^{\circ}$$ Sol. (D) $$\angle$$ BOC = 100° $$\angle BAC = \frac{1}{2} \angle BOC = 50^{\circ}$$ $\angle BAC + \angle BDC = 180^{\circ}$ $\angle BDC = 180^{\circ} - 50^{\circ}$ $= 130^{\circ}$ 4. Two chords AB and CD of a circle cut each other when produced outside the circle at P. AD and BC are joined. If \angle PAD = 30° and \angle CPA = 45°, find \angle CBP. - (A) 105° - (B) 115° (C) 135° (D) None of these Sol. (A) $$\angle$$ PAD = 30° \angle CPA = 45° $$\angle DAB = \angle DCB$$ $$\angle$$ PCB + \angle CBP + \angle BPC =180° \angle CBP = 105° $$\Rightarrow$$ 30° + \angle CBP + 45° = 180° 5. Given a chord AB in a circle as shown. If two more chords AD and BE are drawn perpendicular to AB, If AD =10 cm then - (A) BE=20cm - (B) BE = 40cm - (C) BE=10cm - (D) None of these - Sol. - Join point A to E and also join point B to D. AE and BD are the diameter of circle. $$AE^2 = BD^2$$ $$AE^2 = AB^2 + BE^2$$ $$AE^{2} = BD^{2}$$ $$AE^{2} = AB^{2} + BE^{2}$$ $$BD^{2} = AB^{2} + AD^{2}$$ $$BE = AD$$ - PQ, PR are tangents to a circle and QS is a diameter, if \angle QPR=60° then find \angle SOR. 6. - (A) 60 (C) 30 (D) None of the foregoing - Sol. **(A)** - Lets, O is centre of circle $$\angle$$ QPR = 60 \angle QOR = (180 $^{\circ}$ - 60) $$\angle SOR = 60$$ 7. In the following figure, QS is the diameter and APT the tangent at P. Then \angle APQ is equal to: 8. In the adjoining figure AOB is a diameter, MPQ is a tangent at P, then the value of \angle APQ is equal to: (A) 135° **Sol. (D)** $$\angle AOP + \angle BOP = 180^{\circ}$$ $\angle AOP = 180^{\circ} - 120^{\circ}$ $= 60^{\circ}$ $\angle OAP = \angle OPA$ (Isosceles Triangle) In \triangle AOP \angle OAP + \angle OPA + \angle AOP = 180° 2 \angle OAP = 180° - 60° = 120° \angle OAP = 60° (B) 60° Equilateral triangle \angle QPA = \angle QPO + \angle APO = 90° +60° = 150° ## 9. In the given figure, \angle BFD = : (A) 75° (B) 76° (C) 77° (D) 78° Sol. (D) $$\angle BAF = 180^{\circ} - 78^{\circ}$$ $\angle BFD = 180^{\circ} - \angle BAF = 180^{\circ} - (18^{\circ} - 78^{\circ}) = 78^{\circ}$ 10. O_1 and O_2 are the centres of the two circles. Find $\angle DO_2C$. (A) 69° (B) $\left(\frac{69}{2}\right)^{\circ}$ (C) 111° (D) $\left(\frac{111}{2}\right)^{\circ}$ Sol. (C) $$\angle ABD = \frac{111^{\circ}}{2} \implies DBC = 180^{\circ} - \left(\frac{111^{\circ}}{2}\right)$$ $$\angle DO_2C = 2\left(180^{\circ} - \left(180^{\circ} - \frac{111^{\circ}}{2}\right)\right)$$ = 111°