1. AB and AC are two equal chords of a circle whose centre is O. If OD \perp AB and OE \perp AC then:

(A)
$$OD > OE$$

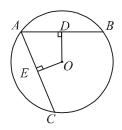
(B)
$$OD < OE$$

(C)
$$OD = OE$$

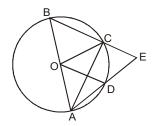
(D) None of these

Sol. (C)

AB = AC
OO
$$\perp$$
 AB \Rightarrow AD = DB \Rightarrow AD=DB = AE
OE \perp AC \Rightarrow AE = CE = CE
PA = OB = OC = Radius of circle
OD = $\sqrt{OA^2 - AD^2}$
= $\sqrt{OA^2 - AE^2}$ = OE



2. In the given figure, O is centre, \angle COD = 40°, then \angle AEB = :



(B)
$$65^{\circ}$$

(C)
$$70^{\circ}$$

(D)
$$75^{\circ}$$

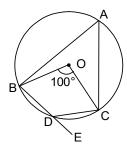
Sol. (C)

$$\angle$$
CAD = 20°
 \angle AEB = ?
 \angle COD = 40°
 \angle ACB = 90° = \angle ACE

In ΔACE

ACE
$$\angle CAD + \angle ACE + \angle AEC = 180^{\circ}$$
 $20^{\circ} + 90^{\circ} + \angle AEC = 180^{\circ}$
 $\angle AEC = 180^{\circ} - 110^{\circ}$
 $= 70^{\circ}$
 $\angle AEC = \angle AEB = 70^{\circ}$

3. O is the centre of the circle. Find $\angle BDC$.



(B)
$$90^{\circ}$$

(D)
$$130^{\circ}$$

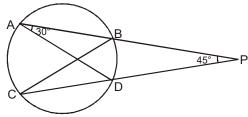
Sol. (D)

$$\angle$$
 BOC = 100°

$$\angle BAC = \frac{1}{2} \angle BOC = 50^{\circ}$$

 $\angle BAC + \angle BDC = 180^{\circ}$
 $\angle BDC = 180^{\circ} - 50^{\circ}$
 $= 130^{\circ}$

4. Two chords AB and CD of a circle cut each other when produced outside the circle at P. AD and BC are joined. If \angle PAD = 30° and \angle CPA = 45°, find \angle CBP.



- (A) 105°
- (B) 115°

(C) 135°

(D) None of these

Sol. (A)

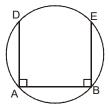
$$\angle$$
 PAD = 30°
 \angle CPA = 45°

$$\angle DAB = \angle DCB$$

$$\angle$$
 PCB + \angle CBP + \angle BPC =180°
 \angle CBP = 105°

$$\Rightarrow$$
30° + \angle CBP + 45° = 180°

5. Given a chord AB in a circle as shown. If two more chords AD and BE are drawn perpendicular to AB, If AD =10 cm then



- (A) BE=20cm
- (B) BE = 40cm
- (C) BE=10cm
- (D) None of these

- Sol.
 - Join point A to E and also join point B to D. AE and BD are the diameter of circle.

$$AE^2 = BD^2$$

$$AE^2 = AB^2 + BE^2$$

$$AE^{2} = BD^{2}$$

$$AE^{2} = AB^{2} + BE^{2}$$

$$BD^{2} = AB^{2} + AD^{2}$$

$$BE = AD$$

- PQ, PR are tangents to a circle and QS is a diameter, if \angle QPR=60° then find \angle SOR. 6.
 - (A) 60

(C) 30

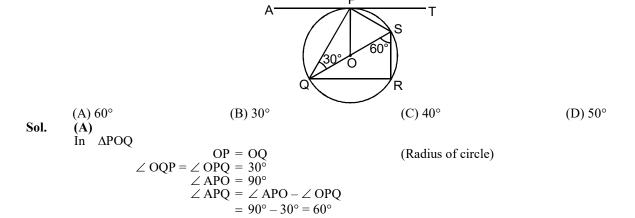
(D) None of the foregoing

- Sol. **(A)**
 - Lets, O is centre of circle

$$\angle$$
 QPR = 60
 \angle QOR = (180 $^{\circ}$ - 60)

$$\angle SOR = 60$$

7. In the following figure, QS is the diameter and APT the tangent at P. Then \angle APQ is equal to:



8. In the adjoining figure AOB is a diameter, MPQ is a tangent at P, then the value of \angle APQ is equal to:

(A) 135° **Sol. (D)**

$$\angle AOP + \angle BOP = 180^{\circ}$$

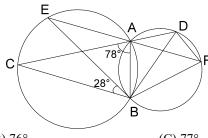
 $\angle AOP = 180^{\circ} - 120^{\circ}$
 $= 60^{\circ}$
 $\angle OAP = \angle OPA$ (Isosceles Triangle)

In \triangle AOP \angle OAP + \angle OPA + \angle AOP = 180° 2 \angle OAP = 180° - 60° = 120° \angle OAP = 60°

(B) 60°

Equilateral triangle \angle QPA = \angle QPO + \angle APO = 90° +60° = 150°

9. In the given figure, \angle BFD = :



(A) 75°

(B) 76°

(C) 77°

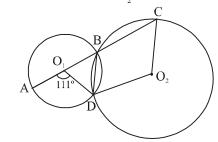
(D) 78°

Sol. (D)

$$\angle BAF = 180^{\circ} - 78^{\circ}$$

 $\angle BFD = 180^{\circ} - \angle BAF = 180^{\circ} - (18^{\circ} - 78^{\circ}) = 78^{\circ}$

10. O_1 and O_2 are the centres of the two circles. Find $\angle DO_2C$.



(A) 69°

(B) $\left(\frac{69}{2}\right)^{\circ}$

(C) 111°

(D) $\left(\frac{111}{2}\right)^{\circ}$

Sol. (C)

$$\angle ABD = \frac{111^{\circ}}{2} \implies DBC = 180^{\circ} - \left(\frac{111^{\circ}}{2}\right)$$

$$\angle DO_2C = 2\left(180^{\circ} - \left(180^{\circ} - \frac{111^{\circ}}{2}\right)\right)$$

= 111°