RIGHT CIRCULAR CONE

1.	The cost of canvas required for a conical tent, of height 4 m and diameter of base 6 m, at the rate of Rs 7 per m ² is:				
Sol.	(A) Rs 420 (D)	(B) Rs 300	(C) Rs 340	(D) Rs 330	
	Sur	face area of conical tent =	$\pi r \sqrt{r^2 + h^2}$		
	$=\sqrt{16+9}.\Pi.3 = = 15 \pi \text{ m}^2$				
	Rate per $m^2 = 7$.				
		Total Cost =	$7 \times 15 \ \pi = = 330.$		
2.	A right circular cylinder and a right circular cone, both have the same radius and height, then the ratio of their volumes is A/B, then A+B is:				
~ .	(A) 6	(B) 4	(C) 5	(D) 3	
Sol.	(B) Volume of a right circular cylinder $= \pi r^2 h$				
	Volumo	e of a right circular cone =	$\frac{1}{3}\pi r^2 h$		
		required ratio =	$\frac{\pi r^2 h}{\frac{1}{3}\pi r^2 h} = 3:1.$		
3.	A hall has dimensions 24 m \times 8 m \times 6 m. The length of the longest pole which can be accommodated in the hall is				
Sol.	: (A) 26 m (A)	(B) 28 m	(C) 30 m	(D) 36 m	
	Le	ength of the longest pole =	$\sqrt{(24)^2 + (8)^2 + (b)^2 (6)^2}$		
			26 m.		
4.	The slant height of a cone is increased by a%. If radius remains same, the curved surface area is increased by.				
	(A) a %	(B) $a^2 \%$	(C) 2a %	(D) None of these	
Sol.	(A) Let the radius and slant height of a cone be r and l respectively. Then its curved surface area is πrl . Now l in				
	increased by a% th	en increased curved surface	e area = $\Pi rl(1+a/100)$		
	%	increase in surface area =	$\frac{\pi r l \left(1 + \frac{P}{100}\right) - \pi r l}{\pi r l} \times 100\%$	ó	

= a %.

- A cone, whose height is 1/128 of its radius, is melted to form a sphere. Find the ratio of radius of the sphere to that 5. of the cone.
 - (A) 1 : 3
- (B) 1:8
- (C) 2:3
- (D) 1:2

Sol.

(B)

Volume of the cone = $1/3\Pi r 2(r/32).1/4$

Volume of the sphere $=\frac{4}{3}\pi R^3$; where *R* and *r*

are radii of sphere and cone respectively.

Given that

$$1/4. \prod r^3 / 96 = \frac{4}{3} \pi R^3$$

$$\Rightarrow$$

$$\frac{R^3}{r^3} = 1/512$$

$$\Rightarrow$$

$$\frac{R}{r} = 1/8$$

- A sphere, a cylinder and a cone are of the same height and same radius then the ratio of their curved surfaces is: 6.
 - (A) $4:\sqrt{5}:4$
- (B) $\sqrt{5}$: 4:4
- (C) $4:4:\sqrt{5}$
- (D) None

Sol.

As Given that height of all three are same, so if *r* be the radius and *h* be the height then

$$h = 2r$$

Now

C.S.A. of the sphere =
$$4\pi r^2$$

C.S.A. of the sphere =
$$4\pi r^2$$

C.S.A. of the cylinder = $2\pi rh = 2\pi r (2r) = 4\pi r^2$

C.S.A. of the cone =
$$\pi r \sqrt{r^2 + h^2} = \pi r \sqrt{r^2 + (2r)^2} = \sqrt{5}\pi r^2$$

So their ratios are

$$4\pi r^2: 4\pi r^2: \sqrt{5}\pi r^2$$

$$\Rightarrow$$

$$4:4:\sqrt{5}$$

- .7. A right triangle with its sides 6 cm, 8 cm and 10 cm is revolved about the side 8 cm. Find the volume of the solid so formed.
 - (A) 309 cm3
- (B) 301.71 cm3
- (C) 301.2
- (D) None

Sol.

- Let ABC be a right triangle with AB = 8 cm, BC = 6cm and AC = 10 cm. When this triangle is revolved about Sol. AB, it forms a right circular cone of radius = BC = 6 cm and height AB = 8 cm.
 - *:*. Volume of the solid formed = Volume of the cone of radius 6cm and height 8 cm

$$= \frac{1}{3}.\Pi.(6.6)8 \text{ cm}3$$

$$= 301.71 \text{ cm}^3$$

8. A cone of height 24 cm has a curved surface area 550 cm². Find its volume. (Take
$$\pi = 22/7$$
).

(A) 1342 cm3

- (B) 1232 cm3
- (C) 1096 cm3
- (D) 1228 cm3

Sol. (B)

Sol. Let r cm be the radius of the base and ℓ cm the slant height. Then,

$$\ell^2 = r^2 + 24^2$$
 [Using: $\ell^2 = r^2 + h^2$]

$$\Rightarrow \qquad \ell^2 = r^2 + 576 \Rightarrow \ell = \sqrt{r^2 + 576} \qquad \dots (i)$$

Now, Curved surface area = 550 cm^2

$$\Rightarrow \qquad \pi r \ell = 550$$

$$\Rightarrow \frac{22}{7} \times r \times \sqrt{r^2 + 576} = 550$$

$$\Rightarrow r\sqrt{r^2 + 576} = 550 \times \frac{7}{22}$$

$$\Rightarrow$$
 $r\sqrt{r^2+576} = 25 \times 7$

$$\Rightarrow r^2(r^2 + 576) = (25 \times 7)^2$$

$$\Rightarrow r^4 + 576r^2 - (25^2 \times 7^2) = 0$$

$$\Rightarrow r^4 + 576r^2 - (625 \times 49) = 0$$

$$\Rightarrow r^4 + 625r^2 - 49r^2 - 625 \times 49 = 0$$

$$\Rightarrow (r^2 + 625) - 49(r^2 + 625) = 0$$

$$\Rightarrow \qquad (r^2 + 625)(r^2 - 49) = 0$$

$$r^2 - 49 = 0$$
$$r = 7$$

$$[\because r^2 + 625 \neq 0]$$

:. Volume =
$$\frac{1}{3} \pi r^2 h = \frac{1}{3} \times \frac{22}{7} \times 7 \times 7 \times 24 \text{ cm}^3 = 1232 \text{ cm}^3$$

9. The base diameter of a solid in the form of a cone is 16 cm and the height of the cone is 10 cm. It is melted and recast into spherical balls of diameter 2 cm. Find the number of balls, thus obtained.

(A) 130

 \Rightarrow

- (B) 124
- (C) 160
- (D) 122

The radius of the base of the cone = 16/2cm = 8 cm

and the radius of the sphere = 1 cm.

Now, the volume of the cone = $\frac{1}{3} \pi \times 8^2 \times 10 \text{ cm}^3$

and the volume of each sphere = $\frac{4}{3} \pi 1 \text{cm}^3 = 4/3\pi \text{ cm}^3$

Hence, we have $n4/3\pi = 640/3\pi$

$$\Rightarrow$$
 n = 160

Hence, the required number of balls = 160

10. The radius and height of a cone are in the ratio 3:4. If its volume is $12 \, \Pi \, \text{cm}^3$, find its slant height.

(A) 10

(B) 12

(C) 4

(D) 22

sol. As per data r/h=3/4

so,
$$\frac{1}{3}\Pi(3/4h)^2.h = 12\Pi$$

so h=4 cm.