RIGHT CIR CYLINDER

1.		The fault of two cylinders are in the faulo 2. / and then neights are in the faulo 7. 5 what is the faulo of their volumes					
Sol.	(A) 7 : 16 (C)	(B) 10:9	(C) 4:21	(D) 27:20			
501.	Let the radii of two cylinders be $2r$ and $3r$ respectively and their height be $5h$ and $3h$ respectively then the ratio of						
	their volumes.	=	$\frac{\Pi(2r)^2(7h)}{\Pi(7r)^2(3h)} = 4/21$				
2.	A cylindrical rod w number of balls wi		ts radius is melted and reca	st into spherical balls of same rac	lius. The		
Cal	(A) 4	(B) 3	(C) 12	(D) 8			
Sol.	(C) Let the radius of the cylindrical rod is r and height is $16r$ Volume of the cylindrical rod = $\pi r^2 (16r) = 16\pi r^3$						
	Volume of one sph	perical ball of same radius=	$\frac{4}{3}\pi r^3$				
		No. of balls =	$\frac{16\Pi r^3}{4/3\Pi r^3} = 12$				
3.	Two cylinder of sa	me volume have their heigl	nts in the ratio 25 : 36 .Find	I the ratio of their radii.			
	(A) 6:5	(B) $\sqrt{2}$: 1	(C) $\sqrt{5}$: 2	(D) 2: $\sqrt{5}$			
Sol.	(A) Let the radii of two cylinders be r_1 and r_2 respectively. Again Let their heights be 25h and 36h respectively. Their volumes are same. \Rightarrow						
	\Rightarrow	$\left(\frac{r_1}{r_2}\right)^2 =$	36/25				
		$\frac{r_1}{r_2}$	= 6 / 5				

4.	The sphere has the same volume as a cylinder whose height is equal to the diameter of its cross section, then the							
Sol.	ratio of their (A) 6 (D)	radii is $\sqrt[3]{a/b}$, find a+b. (B) 4	(C) 8	(D) 5				
		Volume of the sphere	(Let suppose)					
	Given that	Volume of the given cylinder v_1 $\frac{4}{3}\pi r_1^3$	(Let suppose)					
	\Rightarrow	$\left(\frac{r_1}{r_2}\right)^3$	$= \frac{2\pi}{4\pi} \times 3 \implies \frac{r_1}{r_2} = \sqrt[3]{\frac{3}{2}}$					
5.	A cylindrical piece of iron of radius 7 cm and height 21cm is shaped into a cone of same radius. The height of							
Sol.	cone is : (A) 63 cm (A) Volume	(B) 14 cm	(C) 12 cm etal = $\pi(7)^2 \times 21 \text{ cm}^3$	(D) 8 cm				
			one = $\frac{1}{3}\Pi(7)^2 h$,					
	Hence h is the height of the cone.							
	Given that their volume is same then $\pi(7)^2 \times 21 = \frac{1}{3}\Pi(7)^2 h$							
	\Rightarrow		h = 63 cm.					
6.	If the heights and the radii of two circular cylinders are in the ratio 2:3 and 4:5 respectively. Find the ratio curved surface areas.							
Col	(A) 8:15	(B) 5 : 6	(C) 5:8	(D) 2:5				
Sol.	(A) Let the heights and the radii of two circular cylinders be $2h$, $3h$ and $4r$, $5r$ respectively. Then the ratio of their curved surface areas will be							
			$= \frac{2\pi(4r)(2h)}{2\pi(5r)(3h)} = \frac{8}{15} = 8:$	15.				
7	A hollow cylindrical tube open at both ends is made of iron 2 cm thick. If the internal diameter be 12 cm and the length of the tube be 50 cm, find the volume of iron in it.							
Sol.	(A) 4000 cu (B)	. ,	. ,	. ,				
		Volume of the iron	$= \pi (6+2)^2 \times 50 - \pi (6)^2$					
			$= \frac{22}{7} \times 50.(64 - 36) = 4$	1400 cm ³ .				

	cylinder?	J	8	1	
Sol.	(A) 3 : 1 (C)	(B) 7:4	(C) 3:2	(D) none of these	
Sol.	(C)				
		Volume of the sphere	$=\frac{4}{3}\pi r^3$		
	and	volume of the cylinder	$= \Pi(R)^2 (9/2R)$	where	
	r and R are radii of	sphere and cylinder resp	ectively.		
	Now	$\frac{4}{3}\pi r^3$	$= \Pi(R)^2 (9/2R)$		
	\Rightarrow	$\frac{r^3}{R^3}$	= 27/8		
		1	r/R=3/2		
9.	The ratio of radii o		and heights are in the rat	to 2:3. The ratio of their volumes is	
Sol.	(A) 1 : 9 (C)	(B) 4:9	(C) 2:9	(D) 5 : 9	
~ ~		cylinders be r and $\sqrt{3}r$	and heights be $2h$ and $3h$	respectively them the ratio of their vo	olumes
		$\frac{\pi r^2(2h)}{\pi(\sqrt{3}h)^2(3h)}$	$=\frac{2}{9}=2:9.$		
10		and a sphere are of the sa	me height and same radiu	s then the ratio of their curved surfac	es is :
C-1	. ~ .	(B) $\sqrt{5} : 4 : 4$	(C) $4:4:\sqrt{5}$	(D) None	
Sol.	(C) As Given that heigh	nt of all three are same, so	o if r be the radius and $h = 2r$	be the height then	
	Now	C.S.A. of the sphere			
		C.S.A. of the cone	$= \pi r \sqrt{r^2 + h^2} = \pi r \sqrt{r^2 + h^2}$	$\overline{(2r)^2} = \sqrt{5}\pi r^2$	
	So their ratios are		$4\pi r^2:4\pi r^2:\sqrt{5}\pi r^2$		
	\Rightarrow		$4:4:\sqrt{5}$		

A sphere is melted to form a cylinder whose height is 9/2 times its radius. What is the ratio of radii of sphere to the

8..