Sphere

1.	The volume of a sphere is fit inside the cube is	$\frac{4}{3} \pi r^3$ cubic units, then the ratio of the volume of a cube to that of a sphere which will		
Sol.	(A) $\frac{4}{3}$: π	(B) 6 : π	(C) 4:3	(D) 4 : π
	Volume of the sphere is $\frac{4}{3}\pi r^3$ cubic units next line side of the cube = diameter of the sphere which will fit inside the			
	cube. So,	Side of the cube = $2r \implies$	volume of the cube = $(2r)^{-1}$	$r^3 = 8r^3$

Side of the cube = 2r \Rightarrow volume of the cube = $(2r)^3 = 8r^3$ $8r^3$

Required ratio =
$$\frac{8r^3}{\frac{4}{3}\pi r^3} = 6 : \pi$$
.

2. A sphere of radius 9 cm is dropped into a cylindrical vessel of radius 10 cm. If the sphere is submerged completely, then its height (in cm) to which the water rises is :

- (A) 2.35
- (B) 2.30
- (C) 9.72
- (D) 2.15

Sol. (C)

Let the height to which the water rises be h

Then the volume of the sphere = Volume of the rising water

$$\frac{4}{3}\Pi(9)^3 = \pi (10)^2 h$$

$$h = 9.72 \text{ cm}$$

 \Rightarrow

- A hollow sphere of internal and external diameters 2 cm and 4 cm respectively is melted into a cone of base
- diameter 6 cm. Find the height of the cone:
- (A) 28/9 cm
- (B) 12/5 cm
- (C) 16 cm
- (D) None of these

Sol. (A)

3.

Volume of the hollow sphere= Volume of the formed cone of height *h*

$$\Rightarrow \frac{1}{3}\Pi(3)^2 h = \frac{4}{3}\Pi(2^3 - 1^3)$$

$$\Rightarrow h = 28/9 \text{ cm.}$$

4. The ratio of the volume and surface area of a sphere of unit radius.

- (A) 4:3
- (B) 3:4
- (C) 1:3
- (D) 3:1

Sol. (C)

Ratio of the volume & surface area of a sphere of unit radius

$$= \frac{\frac{4}{3}\pi(1)^3}{4\pi(1)^2} = 1:3.$$

- 5. The volumes of two spheres are in the ratio 125: 27. Find the difference of their surface areas, if the sum of their radii is 8 units.
 - (A) 64π sq units
- (B) 78 sq units
- (C) 88 π sq units
- (D) 48 sq units

Sol. (A)

Ratio of volumes of two spheres is given as 125:27.

Then the ratio of their radii will be $(125)^{1/3}$: $(27)^{1/3}$ i.e. 5: 3.

Sum of their radii is given as 8 So their radii are 5 and 3 units respectively.

Difference of their surface areas = $4\pi (5)^2 - 4\pi (3)^2$

= 64π sq units.

- The radius of a sphere is increased by P% Its surface area increases by : 6.
 - (A) P%
- (B) P²%
- (C) $\left(2P + \frac{P^2}{100}\right)\%$ (D) $\frac{P^2}{2}\%$

Sol.

Let the radius of the sphere be *r* then

It's surface area = $4\pi r^2$

Increased radius = $r \left(1 + \frac{P}{100} \right)$

Increased surface area = $4\pi r^2 \left(1 + \frac{P}{100}\right)^2$

Increment in surface area = $4\pi r^2 \left(1 + \frac{2P}{100} + \frac{P^2}{(100)^2}\right) - 4\pi r^2$

$$= 4\pi r^2 \left(\frac{2P}{100} + \frac{P^2}{(100)^2} \right)$$

% increase in Surface area = $\frac{4\pi r^2 \left(\frac{2P}{100} + \frac{P^2}{(100)^2}\right)}{4\pi r^2} \times 100$

$$= \left(2P + \frac{P^2}{100}\right)\%.$$

- A hollow spherical bowl whose inner radius is 3 cm is full of water. Half of the water is transferred to a conical cup 7. and it completely filled the cup. If the height of the cup is 9 cm, then the radius of the base of cone, in cm is.
 - (A)4

- (B) 8 π
- (C) $\sqrt{6}$
- (D) 16

Volume of the water in hollow spherical ball $=\frac{4}{3}\Pi(3)^3=36\pi$

Half of the water in transferred to a conical cup and it completely filled the cup. Let the radius of the conical cup be

$$r \text{ cm then.}$$
 $\frac{1}{3} \Pi r^2(9) = 36\pi/2$

$$\Rightarrow$$
 $r = \sqrt{6} \text{ cm.}$

- 8. A sphere is melted to form a cylinder whose height is $15\frac{3}{16}$ times its radius. What is the ratio of radii of sphere to
 - the cylinder?
 (A) 3:1
- (B) 7:4
- (C) 9:4
- (D) Data inadequate

Sol. (C)

Volume of the sphere =
$$\frac{4}{3}\pi r^3$$

and

volume of the cylinder =
$$\pi(R)^2 \left(15\frac{3}{16}\right)R$$
,

where

r and R are radii of sphere and cylinder respectively.

$$\frac{4}{3}\pi r^3 = \pi (R)^2 \left(\frac{243}{16}\right) R$$

$$\Rightarrow$$

$$\frac{r^3}{R^3} = \frac{3^6}{2^6} \implies \frac{r}{R} = \frac{9}{4} = 9:4.$$

- **9.** The curved surface areas of two spheres are in the ratio 9 : 25. Find the ratio of their volumes.
 - (A) 1 : 2
- (B) 27/125
- (C) 8:1
- (D) 4:1

Sol. (B)

Let the radius of two spheres be r_1 and r_2 respectively then

$$\frac{4\pi r_1^2}{4\pi r_2^2} = 9/25 \qquad \Rightarrow \quad r_1: r_2 = 3.5$$

Now ratio of their volumes

$$=\frac{\frac{4}{3}\pi r_1^3}{\frac{4}{3}\pi r_2^3}=((3/5)^3=27/125$$

10. The curved surface areas of two spheres are in the ratio 1:9. Find the ratio of their volumes.

Sol.

Let the radius of two spheres be r_1 and r_2 respectively then

$$\frac{4\pi r_1^2}{4\pi r_2^2} = 1/9 \qquad \Rightarrow \quad r_1 : r_2 = 1 : 3$$

$$\Rightarrow r_1: r_2 = 1:3$$

Now ratio of their volumes

$$=\frac{\frac{4}{3}\pi r_1^3}{\frac{4}{3}\pi r_2^3}=(1/3)3=1/27$$