

ELIGIBILITY/COMPETITIVE EXAM 2024 PAPER-2

Total Number of Questions: 100 Maximum Marks : 200

MENTION '	YOUR REGIS	TER NUMBER

Serial Number:

Subject: CHEMISTRY

INSTRUCTIONS FOR CANDIDATES

DOs:

- 1. This question booklet is issued to you at **9.55 a.m.** by the room invigilator.
- 2. Check whether the Register Number has been entered and shaded in the respective circles on the OMR answer sheet.
- The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- 4. The Version Code and Serial Number of this question booklet should also be entered on the Nominal Roll without any mistakes.
- 5. Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

DONTs:

THE TIMING AND MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED / MUTILATED / SPOILED.

IMPORTANT INSTRUCTIONS TO CANDIDATES

- 1. In case of usage of signs and symbols in the questions, the regular textbook connotation should be considered unless stated otherwise.
- 2. This question booklet contains **100** questions and each question will have one statement and four different options / responses & out of which you have to choose one correct answer.
- At 10.00 a.m. remove the paper seal of this question booklet and check that this booklet does not have any unprinted or torn or missing pages or items etc., if so, get it replaced by a complete test booklet within 5 minutes of the commencement of exam. Read each item and start answering on the OMR answer sheet.
- 4. Completely darken / shade the relevant circle with a blue or black ink ballpoint pen against the question number on the OMR answer sheet.

ಸರಿಯಾದ ಕೃಮ							ತಪ್ಪು ಕ	_{್ರ} ಮಗಳ	> V	/RON	G MET	HODS			
COF	RRECT	METH	HOD	8	2	3	4	1	2	3	4	1			4
1		3	4	•	2	3	4	1		3	4	1	2	3	4

- Please note that even a minute unintended ink dot on the OMR answer sheet will also be recognized and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR answer sheet.
- 6. Use the space provided on each page of the question booklet for Rough Work. Do not use the OMR answer sheet for the same.
- 7. Once the last Bell rings at 1.00 P.M., stop writing on the OMR answer sheet and hand over the OMR answer sheet to the room invigilator as it is.
- 8. After separating the top sheet (Office copy), the invigilator will return the bottom sheet replica (Candidate's copy) to you.
- 9. All questions carry equal marks.
- 10. Use of Mobile Phones, Calculators and other Electronic / Communication gadgets of any kind is prohibited inside the Examination venue.

1.	Cho	Choose the correct statement(s) with respect to Zn^{2+} and Mg^{2+} separation :								
	(i)	Mixtures of Zn ²⁺ and Mg ²⁺ are usually	sep	arated using anion exchanger rather than						
		cation exchanger.								
	(ii)	Zn ²⁺ can be absorbed from hydrochlori	ic aci	d solutions on anion exchanger resins due						
		to the formation of negatively charged	chlor	o complexes.						
	(iii)	Zn^{2+} is eluted with dil. $\mathrm{H}_2\mathrm{SO}_4$.								
	(1)	Only (i)	(2)	Only (ii)						
	(3)	Only (i) and (ii)	(4)	All three statements						
0	т			d allows on dothorses a nooles wormontively.						
2.		a typical DIA curve, broad endotherms cate:	s an	d sharp endothermic peaks, respectively,						
	(1)	Dehydration reactions and changes in o	cryst	allinity (or) fusion process						
	(2)	Changes in crystallinity (or) fusion process and dehydration reactions								
	(3)	Crystallization and melting								
	(4)	Decomposition and glass transition								
3.	Carb	ooxypeptidase contains :								
	(1)	${\rm Zn(II)}$ and hydrolyses ${\rm CO_2}$								
	(2)	Zn(II) and hydrolyses peptide bonds								
	(3)	${\rm Mg(II)}$ and hydrolyses ${\rm CO_2}$								
	(4)	Mg(II) and hydrolyses peptide bonds								
4.	Whic	Which of the given drugs is not a metallo drug to treat against cancer?								
	(1)	Carbonlatin	(2)	Doxorubicin						

SPACE FOR ROUGH WORK

(4) Cisplatin

Oxaliplatin

(3)

- 5. The C-N stretching frequency, $\nu(CN)$, of the complexes $[V(CN)_6]^{5-}$, $[V(CN)_6]^{4-}$ and $[V(CN)_6]^{3-}$ increases in the order :
 - (1) $[V(CN)_6]^{5.-} < [V(CN)_6]^{4-} < [V(CN)_6]^{3-}$
 - (2) $[V(CN)_6]^{5-} < [V(CN)_6]^{3-} < [V(CN)_6]^{4-}$
 - (3) $[V(CN)_6]^{3} \langle [V(CN)_6]^{4} \langle [V(CN)_6]^{5} -$
 - (4) $[V(CN)_6]^{3-} < [V(CN)_6]^{5-} \le [V(CN)_6]^{4-}$
- 6. Bromine NQR spectrum of K₂TeBr₆ will show:
 - (1) 2 lines

(2) 3 lines

(3) 4 lines

- (4) 6 lines
- 7. Of the following, the compounds that show two signals in $^{19}\mathrm{F}\ \mathrm{NMR}$ spectra are :
 - (i) SF₆

(ii) SF₄

(iii) ClF₅

(iv) XeOF₄

(1) (i) and (ii)

(2) (i) and (iii)

(3) (iii) and (iv)

- (4) (ii) and (iii)
- 8. The geometric cross-section (in barn) of a nucleus A = 125, $r_0 = 1.4 \times 10^{-15}$ m approximately is:
 - (1) 1.05

(2) 1.54

(3) 2.05

- (4) 2.54
- 9. Isotones contain same number of:
 - (1) Protons

(2) Electrons

(3) Neutrons

- (4) Mesons
- ${\bf 10.} \quad {\bf Identify\ radioactive\ capture\ from\ the\ following\ nuclear\ reactions:}$
 - (1) ${}^{9}\text{Be}(\gamma, n) {}^{8}\text{Be}$

- (2) 23 Na (n, γ) 24 Na
- (3) 63 Cu (p, p 3n 9 α) 24 Na
- (4) 107 Ag (n, n) 107 Ag

- 11. The correct statement about both average values of position (<x>) and momentum () of a 1-d harmonic oscillator wave function is:
 - (1) $\langle x \rangle \neq 0$ and $\langle p \rangle \neq 0$
 - (2) $\langle x \rangle = 0 \text{ but } \langle p \rangle \neq 0$
 - (3) $\langle x \rangle = 0$ and $\langle p \rangle = 0$
 - (4) $\langle x \rangle \neq 0 \text{ but } \langle p \rangle = 0$
- 12. The ionization energy of hydrogen atom in its ground state is approximately 13.6 eV. The potential energy of He⁺, in its ground state is approximately:
 - (1) -54.4 eV

(2) -27.2 eV

(3) -13.6 eV

- (4) -108.8 eV
- 13. Which of the following statements on ground state perturbation theory, involving the zeroth order energy $E_0^{(0)}$, first order energy correction $E_0^{(1)}$ and second order energy correction $E_0^{(2)}$, is false?
 - (1) $E_0^{(1)}$ is the average value of perturbation operator with respect to the ground state of the zeroth-order Hamiltonian.
 - (2) $E_0^{(1)}$ is necessarily negative.
 - (3) $E_0^{(2)}$ is necessarily negative.
 - (4) $E_0^{(0)} + E_0^{(1)}$ is an upper bound to the exact ground state energy.
- 14. For some one-electron system with l=0 and m=0, the functions $N_0e^{-\sigma}$ and $N_1(2-\sigma)\ e^{-\sigma/2}$ refer respectively to the ground (ϵ_0) and first excited (ϵ_1) energy levels. If a variational wave function $N_2(3-\sigma)\ e^{-\sigma}$ yields an average energy $\overline{\epsilon}$, it will satisfy:
 - $(1) \quad \overline{\varepsilon} \geq 0$

 $(2) \quad 0 \le \overline{\varepsilon} \le \varepsilon_0$

 $(3) \quad \overline{\varepsilon} \geq \varepsilon_1$

 $(4) \quad \epsilon_0 \le \overline{\epsilon} \le \epsilon_1$

15. The electronic configuration for Gadolinium (Gd) is [Xe] $4f^75d^16s^2$, whereas that of Gd^{2+} is:

(1) [Xe] $4f^5 5d 6s^2$

(2) [Xe] $4f_{.}^{6}6s_{.}^{2}$

(3) [Xe] $4f^65d^16s^1$

(4) [Xe] $4f^75d^1$

16. Which of the following statements is *incorrect*?

(1) A Slater determinant is an antisymmetrized wave function.

(2) Electronic wave function should be represented to Slater determinants.

(3) A Slater determinant always corresponds to a particular spin state.

(4) A Slater determinant obeys Pauli's exclusion principle.

17. The highest occupied MO in N_2 and ${O_2}^+$ respectively are : (take x-axis as internuclear axis)

 $\sigma_{2p_{x}}, \, \pi_{2p_{y}}^{*}$

 $(2) \quad \pi_{2p_y} \,, \, \pi_{2p_z}$

 $(3) \quad \sigma_{2p_x}^*, \, \sigma_{2p_x}$

 $(4) \quad \pi_{2p_{_{f v}}}^{*}, \ \pi_{2p_{_{f z}}}^{*}$

18. The energy levels for cyclobutadiene are $\alpha + 2\beta$, α , α and $\alpha - 2\beta$. The delocalization energy in this molecule is :

(1) 0

(2) -4

(3) -8β

(4) 4a

19. The product of the symmetry elements $C_{2(z)} \times \sigma_{xz}$ is equal to :

(1) σ_{yz}

(2) $\sigma_{2(z)}$

(3) E

(4) σ_{xz}

20. The point group of the Ferrocene (staggered) is:

(1) D_5

(2) D_{5h}

 $(3) \quad D_{5d}$

(4) D_{4h}

- 21. If the component of the orbital angular momentum along the molecular axis of a heteronuclear diatomic molecule is non-zero, the rotational-vibrational spectrum will show:
 - (1) P and R branches only
- (2) P and Q branches only
- (3) Q and R branches only
- (4) All the branches P, Q and R
- 22. The number of rotational symmetry axes for triclinic crystal system is:
 - (1) 4

(2) 3

(3) 1

- (4) 0
- 23. Which of the following properties are characteristic of an ideal solution?
 - (i) $(\Delta_{mix} G) T$, P is negative
- (ii) $(\Delta_{mix} S) T$, P is positive
- (iii) $(\Delta_{mix} V) T$, P is positive
- (iv) $(\Delta_{mix} H) T$, P is negative

(1) (i) and (iv)

(2) (i) and (ii)

(3) (i) and (iii)

- (4) (iii) and (iv)
- **24.** For a van der Waals gas, the partial derivative $\left(\frac{\delta U}{\delta V}\right)_T$ is :
 - $(1) \quad \frac{V_m}{a}$

 $(2) \quad \frac{V_{\rm m}^2}{a}$

 $(3) \quad \frac{a}{V_m^2}$

- $(4) \quad \frac{a}{V_m}$
- **25.** The molar entropy of mixing of liquid 'A' with liquid 'B' is $+ R \ln 2$. The excess molar entropy of mixing 1.0 mol of liquid 'A' with 1.0 mol of liquid 'B' is :
 - (1) -2 R ln 2

(2) + 4 R ln 2

(3) 0

6

 $(4) + R \ln 2$

- 26. The temperature-dependence of the vapour pressure of solid 'A' can be represented by log P = 10·0 1800/T, and that of liquid 'A' by log P = 8·0 1400/T. The temperature of the triple point of 'A' is:
 (1) 200 K
 (2) 300 K
 (3) 400 K
 (4) 500 K
- **27.** Though a constant shift of energy levels of a system changes the partition function, the properties that do *not* change are :
 - (1) Average energy, entropy and heat capacity
 - (2) Average energy and entropy
 - (3) Average energy and heat capacity
 - (4) Entropy and heat capacity
- 28. Four distinguishable molecules are distributed in energy levels E_1 and E_2 with degeneracy of 2 and 3, respectively. The number of microstates, with three molecules in energy level E_1 and one in energy level E_2 is:
 - (1) 4
- 2) 12
- (3) 96
- (4) 192

29. For the following reaction

 $2\,{\rm MnO_4}^- + 5{\rm H_2C_2O_4} + 6{\rm H}^+ \rightarrow 2{\rm Mn}^{2+} + 8{\rm H_2O} + 10{\rm CO_2}$

 $E^{o}(MnO_{4}^{-}/Mn^{2+})\!=\!+1\cdot51\,V \text{ and } E^{o}(CO_{2}/H_{2}C_{2}O_{4})\!=\!-0\cdot49\,V.$

At 298 K, the equilibrium constant is:

- $(1) 10^{500}$
- $(2) 10^{338}$
- $(3) 10^{38}$
- (4) 10^{833}
- 30. Ionic mobilities of NH_4^+ and HCO_3^- are 6×10^{-4} and 5×10^{-4} V $^{-1}$ cm 2 s $^{-1}$. Calculate the transport number of NH_4^+ and HCO_3^- respectively.
 - (1) 0.45, 0.55

(2) 0.40, 0.60

(3) 0.60, 0.40

(4) 0.55, 0.45

- 31. What is the concentration of the reactant in a first order reaction when the rate of the reaction is 0.6 s^{-1} and the rate constant is 0.035?
 - (1) 26.667 M
- (2) 17·143 M
- (3) 26·183 M
- (4) 17.667 M
- 32. What is the value of rate constant 'k' if the value of activation energy E_a and the frequency factor 'A' are 49 kJ/mol and 9×10^{10} s⁻¹ respectively? (T = 313 K)
 - (1) $6 \times 10^2 \, \text{s}^{-1}$

(2) $9 \times 10^2 \, \text{s}^{-1}$

(3) $6 \times 10^{-2} \,\mathrm{s}^{-1}$

- (4) $3 \times 10^2 \,\mathrm{s}^{-1}$
- **33.** Which of the following is **not** an example of heterogeneous catalysis?
 - (1) Production of ammonia by Haber's process
 - (2) Oxidation of SO₂ into SO₃ during contact process
 - (3) Method of obtaining methanol from water gas
 - (4) Combustion of coal
- **34.** The volume of gas absorbed on a solid surface is 10.0 mL, 11.0 mL, 11.2 mL, 14.5 mL and 22.5 mL at 1.0, 2.0, 3.0, 4.0 and 5.0 atm. pressure, respectively. These data are best represented by:
 - (1) BET isotherm

(2) Gibbs isotherm

(3) Langmuir isotherm

- (4) Freundlich isotherm
- 35. The coordinates for the atoms in a body-centred cubic unit cell are:
 - (1) (0, 0, 0) and $(\frac{1}{2}, 0, 0)$

(2) (0, 0, 0) and $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$

(3) (0, 0, 0) and $(0, \frac{1}{2}, 0)$

- (4) (0, 0, 0) and $(0, 0, \frac{1}{2})$
- **36.** A compound of M and X atoms has a cubic unit cell. M atoms are at the corners and body centre position and X atoms are at the face centre positions of the cube. The molecular formula of the compound is:
 - (1) MX
- (2) MX₂
- (3) M_3X_2
- $(4) M_2X_3$

- 37. The number-average molar mass (\overline{M}_n) and weight-average molar mass (\overline{M}_w) of a polymer are obtained respectively by :
 - (1) Osmometry and light scattering measurements
 - (2) Osmometry and viscosity measurements
 - (3) Light scattering and sedimentation measurements
 - (4) Viscosity and light scattering measurements
- ${f 38.}$ The addition polymerization of M (monomer) involves the following stages :

(I = initiator, R = free radical)

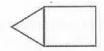
$$I \xrightarrow{\quad k_1 \quad} R$$

$$R+M \xrightarrow{k_2} RM$$

 $RM+M-\longrightarrow RM_2$ and so on

The rate constant for free radical formation is $2 \times 10^{-3} \text{ s}^{-1}$. The initial concentration of initiator is $10^{-3} \text{ mol dm}^{-3}$. The overall rate of the reaction is $4 \times 10^{-3} \text{ mol dm}^{-3} \text{ s}^{-1}$. Assuming steady state approximation for free radical, the kinetic chain length is:

- (1) 2000
- (2) 8×10^9
- (3) 20
- (4) 200
- 39. In a titration, the percentage uncertainties in the measured aliquot volume and the measured titre volume are $\pm x$ and $\pm y$ respectively. The percentage error in the calculated concentration of aliquot is :
 - (1) x + y

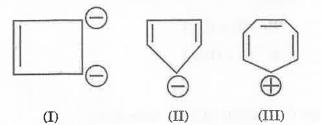

(2) xy

(3) $(xy)^{1/2}$

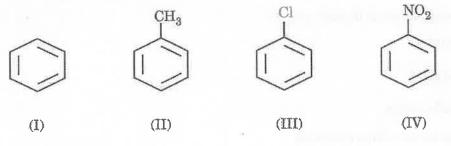
- $(4) \quad (x^2 + y^2)^{1/2}$
- 40. The repeated measurements of lead (Pb) in a lake water sample gave 3·2, 5·2 and 7·2 ppb of Pb. The standard deviation in the measurement of Pb is:
 - (1) 2 ppb
- (2) 4 ppb
- (3) 0 ppb
- (4) $2\sqrt{2}$ ppb

41. The correct IUPAC name of the following compound is:

- (1) 4-formyl-3-nitroanisole
- (2) 4-methoxy-3-nitrobenzaldehyde
- (3) 4-methoxy-6-nitrobenzaldehyde
- (4) 2-formyl-5-methoxynitrobenzene
- 42. The IUPAC name of the following compound is:

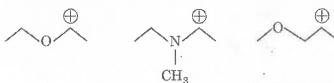

- (1) Bicyclo [2.1.0] pentane
- (2) Bicyclo [0.1.2] pentane
- (3) 1, 2-cyclopropylbutane
- (4) None of the above
- 43. (Z)-but-2-ene reacts with Br_2 in CCl_4 to give :
 - (1) (2R, 3S)-2, 3-dibromobutane
 - (2) (2R, 3R)-2, 3-dibromobutane
 - (3) (2S, 3S)-2, 3-dibromobutane
 - (4) (2R, 3R) and (2S, 3S)-2, 3-dibromobutanes in equal amounts

- 44. A molecule with n chiral centres can have a maximum of ______ stereoisomers.
 - (1) 2n


(2) r

(3) 2^n

- (4) n^2
- 45. Which of the following ions exhibit aromaticity?



- (1) II, III and IV
- (2) I, II and III
- (3). I, III and IV
- (4) I, II, III and IV
- **46.** Identify the correct order of reactivity in electrophilic substitution reactions of the following compounds:

- $(1) \hspace{0.5cm} \mathrm{I} > \mathrm{II} > \mathrm{III} > \mathrm{IV}$
- (2) IV > III > II > I
- $(3) \quad II > I > III > IV$
- $(4) \qquad II > III > I > IV$

47. Which of the following orders is correct for the stability of these carbocations?

- (I)
- (II)
- (III)

 $(1) \qquad I > II > III$

 $(2) \quad \text{III} > \text{II} > \text{I}$

 $(3) \qquad II > I > III$

- $(4) \quad II > III > I$
- 48. Which of the following orders is correct for the stability of these carbanions?

 $CH_2 = CH - CH_2$

· (I)

- (II)
- (III)

 $(1) \qquad I > II > III$

 $(2) \quad III > II > I$

(3) I > III > II

- (4) II > III > I
- 49. Which of the following carbenes is more stable?
 - (1) \bigcirc CH₂ (singlet)
 - (2) CH_2 (triplet)
 - (3) Both are equally stable
 - (4) Stability of carbenes is unpredictable
- **50.** Which of the following can *not* react as a nucleophile?
 - (1) CH_3NH_2

 $(2) \quad (\mathrm{CH_3})_2\,\mathrm{NH}$

(3) $(CH_3)_3 N$

(4) $(CH_3)_4 N^+$

51. Electrophilic aromatic substitution proceeds through a:

(1) Free radical

(2) Sigma complex

(3) Benzene

(4) Carbene

52. Which of the following will undergo $S_N 1$ reaction at a faster rate?

$$\begin{array}{ccc} \operatorname{CH_3} & & \operatorname{CH_3} \\ | & | \\ & | \\ \operatorname{CH_3} - \operatorname{C} - \operatorname{Cl} \\ | & \\ \operatorname{CH_3} \end{array}$$

$$(2) \qquad \mathrm{CH_3}\mathrm{--CH_2}\mathrm{--Cl}$$

$$(3)$$
 $CH_3 - CI$

(4)
$$Ph - C - Cl$$

$$CH_3$$

53. Which of the following catalysts is used in Sommelet-Hauser rearrangement?

(1) Alkali metal amide

(2) Sodium hydroxide

(3) Potassium hydroxide

(4) Aluminium chloride

54. Name the following rearrangement reaction:

$$0 \longrightarrow 0 \longrightarrow N < 0$$

(1) Smiles

(2) Sommelet-Hauser

(3) Stevens

(4) Von-Richter

55. The starting material in McMurry olefination reaction is:

- (1) an alkene
- (2) a carbonyl compound
- (3) an amine
- (4) a dienophile

56. What will be the major product of the following reaction?

$$CH_3$$
 $C = CHCH_3$ $\xrightarrow{SeO_2}$ $\xrightarrow{t-BuOOH}$

(1) $CH_3 \rightarrow CH_5$ CH_2OH

(2) $CH_3 \longrightarrow CH_2OH$

 $(3) \quad \begin{array}{c} \text{CH}_3 \\ \text{HOH}_2\text{C} \end{array} \\ \text{H}$

- $(4) \qquad \underbrace{^{\text{CH}_3}}_{\text{HOH}_2\text{C}} < \underbrace{^{\text{CH}_3}}_{\text{OH}}$
- **57.** An organic compound on Ozonolysis yields formaldehyde as one of the products. This confirms the presence of :
 - (1) a methyl group

(2) a vinyl group

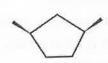
(3) a $C \equiv C$ bond

- (4) two ethylenic double bonds
- 58. The BOC group is the abbreviation of which of the following protecting group?
 - (1) Tertiary butyloxycarbonyl group
- (2) Benzyloxy group

(3) Benzoyl group

- (4) Benzyloxycarbonyl group
- **59.** The correct synthetic equivalent for the synthon NO is:
 - (1) HNO₃

(2) Conc. $HNO_3 + Conc. H_2SO_4$


(3) NaNO₂ / HCl

- (4) NaNO₃
- 60. The reagent used in Sharpless Asymmetric Epoxidation is:
 - (1) Anhydrous AlCl₃
 - (2) p-Chloroperbenzoic Acid
 - (3) Titanium tetra-isopropoxide
 - (4) DCC

61. Which of the following compound(s) is/are chiral?

(A)

(B)

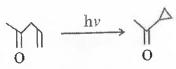
(C)

(1) Only (A) and (B)

(2) Only (B)

(3) Only (B) and (C)

- (4) Only (A)
- 62. Give the name of the following molecular orbital of the five carbon system:

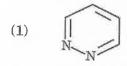


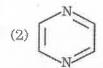
(1) ψ_1

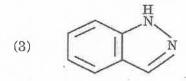
(2) ψ_2

(3) ψ_3

- (4) ψ_4
- 63. Name the following reaction:


- (1) Norrish type I reaction
- (2) Norrish type II reaction
- (3) Oxa-di-π-methane rearrangement
- (4) Paternò-Büchi reaction
- 64. If n-parallel atomic p-orbitals overlap in a π manner in a monocyclic array, the lowest molecular orbital has no nodes and it is called:
 - (1) Aromatic system


(2) Anti-aromatic system


(3) Hückel system

(4) Möbius system

- **65.** Which of the following statements is *incorrect*?
 - (1) Furan is more reactive than pyrrole.
 - (2) Some pyrimidines are found in nucleic acids.
 - (3) Electrophilic substitution in pyrrole occurs in 2 or 5 positions.
 - (4) Pyridine is less basic than pyrrole.
- **66.** The structure of pyridazine is :

- **67.** Digitonin is a ______
 - (1) Lipid
- (2) Protein
- (3) Glycoside
- (4) Alkaloid

- 68. The reagent used in von Braun method is:
 - (1) BrCN
- (2) HCN
- (3) NaCN
- (4) CH₃CN

- 69. A metastable ion has:
 - (1) Lower kinetic energy than normal ions
 - (2) Higher kinetic energy than normal ions
 - (3) Lower potential energy than normal ions
 - (4) Higher potential energy than normal ions
- **70.** If the chemical shift difference is equal or slightly higher than coupling constant J, which of the following will occur?
 - (1) A first order spectra

(2) A non-first order spectra

(3) AX spectra

(4) Simplified spectra

71. Which technique is commonly used to visualize and manipulate individual atoms molecules on surfaces?					
	(1)	X-ray crystallography			
	(2)	Scanning electron microscopy			
38	(3)	Transmission electron microscopy			
	(4)	Scanning tunneling microscopy			
72.		t is the term for a material that conducts electricity only in one or two dimensions at the oscale?			
	(1)	Nanowire			
	(2)	Nanotube			
	(3)	Nanorod			
	(4)	Nanoplatelet			
73.	Whi	ch one of the following is an example of homogeneous catalysis?			
	(1)	Haber process of synthesis of ammonia			
	(2)	Catalytic conversion of SO_2 to SO_3 in contact process			
	(3)	Catalytic hydrogenation of oils			
	(4)	Acid hydrolysis of methyl acetate			
74.	The	elements which are good catalysts and can change their oxidation number are:			
	(1)	Noble elements			
	(2)	Alkalis			
	(3)	Transition elements			
	(4)	Acids			
75.	Whi	ich term describes the proportion of a drug that enters the systemic circulation and is			
		ilable to produce an effect?			
	(1)	Bioavailability (2) Absorption			
	(3)	Distribution (4) Metabolism			
	(0)	TO DO IT TO WOTON			

	(1)	Increase heart rate		*			
	.(2)	Dilate blood vessels					
	(3)	Lower blood pressure	9				2
	(4)	Enhanced blood clotting		7	7.1		
77.	Mol	ecular cages capable of tra	pping guest molect	ıles are known as :			
	(1)	Fullerenes					
	(2)	Zeolites					
	(3)	Calixarenes					
	(4)	Rotaxanes					
78.	Whi	ch of the following is not a	ı commonly used sı	ıpramolecular host n	nolecule ?		6)
	(1)	Crown ether				税	
	(2)	Cucurbituril		n 4			
	(3)	Carboxylic acid					
	(4)	Calixarenes					
79.	The	region which is greatly affo	ected by air polluti	ion is :			
	(1)	Stratosphere	(2)	Mesosphere			
	(3)	Thermosphere	(4)	Troposphere			
80.	Whi	ch among the following is t	the main source of	soil and water pollut	ion?		
	(1)	Mining					
	(2)	Agro-industry					
	(3)	Thermal power stations				8	50
	(4)	Fishing					

76. What is the main function of beta-blockers in the body?

			*							
81.	The	The correct order of decreasing electronegativity of the following atoms is:								
	(1)	As > Al > Ca > S	(2)							
	(3)	S > As > Al > Ca	(4)	S > Ca > As > Al						
82.	The	correct order of the size of S, S ²⁻ , S ²⁺	and S^4	* species is :						
	(1)	$S > S^{2+} > S^{4+} > S^{2-}$		$S^{2-} > S > S^{2+} > S^{4+}$						
	(3)	$S^{2+} > S^{4+} > S^{2-} > S$	(4)	$S^{4+} > S^{2-} > S > S^{2+}$						
83.	The	geometry and the shape of ${ m ICl_3}$ molec	ule is :							
	(1)	Trigonal pyramidal and bent								
	(2)	Trigonal planar and bent								
	(3)	Octahedral and T-shape								
	(4)	Trigonal bipyramidal and T-shape								
84.	The	molecule that possesses dipole mome	nt is:							
	(1)	SF_4	(2)	$\mathrm{CCl_4}$						
	(3)	$\mathrm{XeF_4}$	(4)	PCl_5						
85.		ording to Bent's rule, the correct geo ${}_3F_2$ is respectively :	metry	around P atom and position of fluorine in						
	(1)	TBP and equatorial								
	(2)	Square pyramidal and axial								
	(3)	Square pyramidal and equatorial								
	(4)	Trigonal bipyramidal and axial								
86.	SbF	$_{5}$ in HF is regarded as a :								

SPACE FOR ROUGH WORK

(2)

(4)

(2)

(4)

Strong base

Weak base

5.9

7.0

Strong acid

Weak acid

4.5

6.7

87. The pH of 1×10^{-7} N solution of HCl is:

(1)

(3)

(1)

(3)

- **88.** The fragment which is isolobal with $\lceil \text{Re(CO)}_5 \rceil$ is:
 - (1) CH

(2) CH_2

(3) CH₃

- (4) CH₄
- 89. The hybridization of Nitrogen and Phosphorus in Phosphazene is:
 - (1) sp^2 and sp^3

(2) sp and sp^2

(3) sp and sp^3

- (4) sp^2 and sp
- 90. Acetic acid exerts the following effect on the acidic behaviour of HX (X = Cl, Br and I):
 - (1) Levelling effect
 - (2) Neutralization effect
 - (3) Differentiating effect
 - (4) Solvation effect
- 91. In the first transition series, the paramagnetism is due to unpaired spins being approximately equal to $\mu = 2\sqrt{S(S+1)}$ Magnetons, where S = total spin. On the basis of this, Cu^+ ion has the magnetic moment of:
 - (1) Zero Magneton

(2) 1.41 Magneton

(3) 2.83 Magneton

- (4) 3.88 Magneton
- **92.** Which one of the following Co(III) complexes has the highest rate of acid hydrolysis at pH=1?
 - (1) trans- $\left[\operatorname{Co(NH_3)_4Cl_2}\right]^+$
 - $(2) \quad \text{trans-} \Big[\text{Co(en)(NH}_3)_2 \text{Cl}_2 \Big]^+$
 - $(3) \quad \operatorname{trans-} \! \left[\operatorname{Co(en)}_{2} \! \operatorname{Cl}_{2} \right]^{+}$
 - (4) $\operatorname{cis-}\left[\operatorname{Co(NH_3)_4Cl_2}\right]^+$

- 93. Which one among the following complexes is an outer orbital octahedral complex?
 - (1) $\left[\text{Cr} \left(\text{H}_2 \text{O} \right)_6 \right]^{2+}$
 - $(2)\quad \left[\mathrm{Cr}\left(\mathrm{NH_3}\right)_6\right]^{3+}$
 - $(3)\quad \left[\operatorname{Co}\left(\operatorname{NH}_{3}\right)_{6}\right]^{3+}$
 - (4) $\left[\text{Fe} \left(\text{CN} \right)_6 \right]^{3-}$
- **94.** UV-Vis absorption band positions of lanthanide ions do **not** change with various ligands because:
 - (1) of incompletely filled f-shell
 - (2) crystal field splitting is less
 - (3) f-shell is well shielded from ligand field
 - (4) of Laporte-forbidden f-f transition
- 95. Rare earth tris-chelates of β -diketonate derivatives cause :
 - (1) Large pseudocontact shifts in Lewis acids
 - (2) Large pseudocontact shifts in Lewis bases
 - (3) Spin-Spin decouplings
 - (4) Decrease in second order (Δ) splitting than first order (J) splitting
- 96. The Petasis reagent is:

$$^{(1)}$$
 $^{\text{CP}}_{2}$ Ti $< \frac{\overset{\text{H}_{2}}{\text{Cl}}}{\text{Cl}} > \text{Al} < \frac{\overset{\text{CH}_{3}}{\text{CH}_{3}}}{\text{CH}_{3}}$

$$_{(2)}$$
 $_{\mathrm{CP_2Ti}}<_{\mathrm{CH_2}}^{\mathrm{CH_2}}\times_{\mathrm{Pr}}^{\mathrm{CH_3}}$

(3)
$$CP_2Ti \stackrel{O}{\swarrow} CH_3$$
 CCH_3

97. Complete the reaction with suitable answer as given below:

$$RuCl_2(PPh_3)_3 \xrightarrow{hP}^{Ph}$$

(1) $\begin{array}{c} \text{Cl} > \Pr_3 \\ \text{I} \\ \text{Ru} = Ph \\ \text{H} \\ \text{PPh}_3 \end{array}$

(2) $\begin{array}{c} \text{Cl} \\ \text{Cl} \\ \text{PPh}_{3} \\ \text{Ru} \\ \text{PPh}_{3} \end{array}$

 $(3) \qquad \begin{matrix} \text{Cl} \\ \text{Cl} \\ \text{Cl} \end{matrix} \begin{matrix} \text{PPh}_3 \\ \text{Ru} \end{matrix} \begin{matrix} \text{Ph} \\ \text{Ph} \\ \text{PPh}_3 \end{matrix}$

(4) $\begin{array}{c} \text{PPh}_3 \\ \text{Cl} > \begin{array}{c} \text{Ph} \\ \text{Ru} \end{array} \begin{array}{c} \text{Ph} \\ \text{Ph} \\ \text{PPh}_3 \end{array}$

98. Which among the following alkene will bind most strongly to a metal?

(1) Cyclooctadiene

(2) Ethylene

(3) Norbornene

(4) Cyclohexene

99. When diborane (B_2H_6) is heated at 100°C in a sealed tube, it gives :

(1) B_5H_9

(2) $B_{10}H_{14}$

(3) B_4H_{10}

(4) B_5H_{11}

100. When $\left[\mathrm{Ni_6(CO)_{12}}\right]^{2-}$ is heated with FeCl₃, it will form :

(1) $\left[Ni_9(CO)_{18} \right]^{2-}$

(2) $\left[\mathrm{Ni_9C(CO)_{16}}\right]^{2-}$

 $(3) \quad \left[\mathrm{Ni_9C(CO)_{17}}\right]^{2-}$

(4) $\left[\mathrm{Ni_9C(CO)_{18}}\right]^{2-}$